Publications

[Google Scholar Link]

Papers in Causal Discovery and Inference: CD
Papers in Causality-Empowered ML/AI: ML/AI
Papers in Scientific Discovery: SD
  • Z. Zhao, Q. Liu, K. Zhou, Z. Liu, Y. Shao, Z. Hu, B. Huang. Activation Control for Efficient Eliciting Long Chain-of-Thought Ability of Language Models. NeurIPS’25.
  • W. Wu, Z. Song, K. Zhou, Y. Shao, Z. Hu, B. Huang. Towards General Continuous Memory for Vision-Language Models. NeurIPS’25.
  • H. Liang, S. Shi, Y. Zhang, B. Huang, Y. Du.Causality Meets Locality: Provably Generalizable and Scalable Policy Learning for Network Systems. NeurIPS’25.
  • W. Wang, M. Gong, B. Huang, J. Bailey, B. Han, K. Zhang, F. Liu. Practical Kernel Selection for Kernel-Based Conditional Independence Test. NeurIPS’25.
  • X. Wang, B. Huang. Modeling Unseen Environments with Language-Guided Composable Causal Components in Reinforcement Learning. ICLR’25. [pdf]
  • P. Prashant, I. Ng, K. Zhang, B. Huang. Differential Causal Discovery for Latent Hierarchical Causal Models. ICLR’25. [pdf]
  • Y. Lin, Y. Huang, W. Liu, H. Deng, I. Ng, K, Zhang, M. Gong, Y. Ma, B. Huang. A Skewness-based Criterion for Addressing Heterogeneous Noise in Causal Discovery. ICLR’25. [pdf]
  • Y. Yang, B. Huang, F. Feng, X. Wang, S. Tu, L. Xu. Towards Generalizable Reinforcement Learning via Causality-Guided Self-Adaptive Representations. ICLR’25. [pdf]
  • Z. Zhang, I. Ng, D. Gong, Y. Liu, M. Gong, B. Huang, K. Zhang, A. Hengel, J. Shi. Analytic DAG Constraints for Differential DAG Learning. ICLR’25. [pdf]
  • W. Liu, H. Hou, E. Gao, B. Huang, Q. Ke, H. Bondell, M. Gong. MissScore: High-Order Score Estimation in the Presence of Missing Data. ICML’25.
  • Y. Liu, Z. Zhang, D. Gong, M. Gong, B. Huang, A. Hengel, K, Zhang, J. Shi. Latent Covariate Shift: Unlocking Partial Identifiability for Multi-Source Domain Adaptation. TMLR’25.
  • [CD]  X. Feng*, B. Huang*, Z. Chen, R. Cai, C. Glymour, Z. Geng, K. Zhang. Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables. JMLR’24. [pdf]
  • [CD] Y. Zheng, B. Huang, W. Chen, J. Ramsey, M. Gong, R. Cai, S. Shimizu, P. Spirtes, K. Zhang. Causal-learn: Causal Discovery in Python. JMLR’24. [pdf]
  • [CD][ML/AI] G. Hao, J. Zhang, B. Huang, J. Zhang, K. Zhang. Natural Counterfactuals with Necessary Backtracking. NeurIPS’24.
  • [ML/AI][CD] L. Kong, G. Chen, B. Huang, E. Xing, Y. Chi, K. Zhang. Latent Discrete Concepts in Latent Hierarchical Models. NeurIPS’24.
  • [CD] Y. Wang, B. Huang, W. Huang, X. Geng, M. Gong. Identifiability Analysis of Linear ODE Systems with Hidden Confounders. NeurIPS’24.
  • [CD] L. Li, H. Dai, H. Ghothani, B. Huang, J. Zhang,  S. Harel, I. Bentwich, G. Chen, K. Zhang. On Causal Discovery in the Presence of Deterministic Relations. NeurIPS’24.
  • [CD] X. Dong, I. Ng, B. Huang, Y. Sun, S. Jin, R. Legaspi, P. Spirtes, K. Zhang. On the Parameter Identifiability of Partially Observed Linear Causal Models. NeurIPS’24.
  • [ML/AI][CD] Y. Sun, B. Huang, Y. Yao, D. Zeng, X. Dong, S. Jin, B. Sun, R. Legaspi, K. Ikeda, P. Spirtes, K. Zhang. Identifying Latent State-Transition Processes for Individualized Reinforcement Learning. NeurIPS’24.
  • [CD]  I. Ng, X. Dong, H. Dai, B. Huang, P. Spirtes, K. Zhang. Score-based Causal Discovery of Latent Variable Causal Models. ICML’24. [pdf]
  • [CD]  W. Wang, B. Huang, F. Liu, X. You, T. Liu, K. Zhang, M. Gong. Optimal Kernel Choice for Score Function-based Causal Discovery. ICML’24. [pdf]
  • [CD][ML/AI]  Q. Huang, C. Meng, D. Cao, B. Huang, Y. Chang, Y. Liu. An Empirical Examination of Balancing Strategy for Counterfactual Estimation on Time Series. ICML’24. [pdf]
  • [CD]  X. Dong*, B. Huang*, I. Ng, X. Song, Y. Zheng, S. Jin, R. Legaspi, P. Spirtes, K. Zhang. A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables. ICLR’24. [pdf]
  • [CD]  S. Jin, F. Xie, G. Chen, B. Huang, Z. Chen, X. Dong, K. Zhang. Structural Estimation of Partially Observed Linear Non-Gaussian Acyclic Model: A Practical Approach with Identifiability. ICLR’24. [pdf]
  • [ML/AI][CD] Y. Liu, Z. Zhang, D. Gong, M. Gong, B. Huang, A. Hengel, K. Zhang, J. Shi. Identifiable Latent Polynomial Causal Models through the Lens of Change. ICLR’24. [pdf]
  • [CD]  L. Li, I. Ng, G. Luo, B. Huang, G. Chen, T. Liu, B. Gu, K. Zhang. Federated Causal Discovery from Heterogeneous Data. ICLR’24. [pdf]
  • [ML/AI]  Y. Yang, B. Huang, S. Tu, L. Xu. Boosting Efficiency in Task-Agnostic Exploration Through Causal Knowledge. IJCAI’24. [pdf]
  • [ML/AI][CD] Y. Sun, E. Wang, B. Huang, C. Lu, L. Feng, C. Sun, K. Zhang. ACAMDA: Improving Data Efficiency in Reinforcement Learning Through Guided Counterfactual Data Augmentation. AAAI’24. [pdf]
  • [CD]  I. Ng, B. Huang, K. Zhang. Structure Learning with Continuous Optimization: A Sober Look and Beyond. CLeaR’24 (Best Paper Award). [pdf]
  • [CD]  W. Liu, B. Huang, E. Gao, Q. Ke, H. Bondell, M. Gong. Causal Discovery with Mixed Linear and Nonlinear Additive Noise Models: A Scalable Approach. CLeaR’24. [pdf]
  • G. Zhou, Z. Han, S. Chen, B. Huang, L. Zhu, T. Liu, L. Yao, K. Zhang. HVCP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization. IEEE Transactions on Multimedia’24. [pdf]
  • [CD]  Y. Wang, X. Geng, W. Huang, B. Huang, M. Gong. Generator Identification for Linear SDEs with Additive and Multiplicative Noise. NeurIPS’23. [pdf]
  • [ML/AI]  Y. Liu*, B. Huang*, Z. Zhu, H. Tian, M. Gong, Y. Yu, K. Zhang. Learning World Models with Identifiable Factorization. NeurIPS’23. [pdf]
  • [CD][ML/AI]  L. Kong, B. Huang, F. Xie, E. Xing, Y. Chi, K. Zhang. Identification of Nonlinear Latent Hierarchical Models. NeurIPS’23. [pdf]
  • [ML/AI]  Y. Zhang, Y. Du, B. Huang, Z. Wang, J. Wang, M. Fang, M. Pechenizkiy. Interpretable Reward Redistribution in Reinforcement Learning: A Causal Approach. NeurIPS’23. [pdf]
  • [CD]  B. Huang*, C. Low*, X. Feng, C. Glymour, K. Zhang. Latent Hierarchical Causal Structure Discovery with Rank Constraints. NeurIPS’22. [pdf]
  • [CD] F. Xie, B. Huang, Z. Chen, Y. He, Z. Geng, K. Zhang. Identification of Linear Non-Gaussian Latent Hierarchical Structure. ICML’22. [pdf]
  • [ML/AI]  F. Feng, B. Huang, K. Zhang, S. Magliacane. Factored Adaptation for Non-Stationary Reinforcement Learning. NeurIPS’22. [pdf]
  • [ML/AI] B.Huang*, C. Lu*, L. Liu, J. M. Hernandez-Lobato, C. Glymour, B. Scholkopf, K. Zhang. Action-Sufficient State Representation Learning for Control with Structural Constraints. ICML’22. [pdf]
  • [ML/AI]  B. Huang, F. Feng, C. Lu, S. Magliacane, K. Zhang. AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning. ICLR’22 (spotlight). [pdf]
  • [SD]  B. Huang. Diagnosis of Autism Spectrum Disorder by Causal Influence Strength Learned from Resting-State fMRI Data. Neural Engineering Techniques for Autism Spectrum Disorder, 2021. [book website] [pdf]
  • [ML/AI]  Z. Wang, B. Huang, S. Tu, K. Zhang, L. Xu. DeepTrader: A Deep Reinforcement Learning Approach to Risk-Return Balanced Portfolio Management with Market Conditions Embedding. AAAI‘21. [pdf]
  • [CD]  B. Huang*, K. Zhang*, J. Zhang, J. Ramsey, R. Sanchez-Romero, C. Glymour, B. Schölkopf. Causal Discovery from Heterogeneous/Nonstationary Data. JMLR, 21(89), 2020. [pdf]
  • [CD]  F. Xie, R. Cai, B. Huang, C. Glymour, Z. Hao, K. Zhang, Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent Variable Graphs. NeurIPS’20 (spotlight). [pdf]
  • [ML/AI]  C. Lu*, B. Huang*, K. Wang, K. Zhang, J. M. Hernandez-Lobato, B. Schölkopf. Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation. Offline RL Workshop, NeurIPS’20. [pdf]
  • [ML/AI]  K. Zhang*, M. Gong*, P. Stojanov, B. Huang, Q. Liu, and C. Glymour. Domain Adaptation as a Problem of Inference on Graphical Models. NeurIPS’20. [pdf]
  • [CD]  B. Huang, K. Zhang, M. Gong, C. Glymour. Causal Discovery from Multiple Data Sets with Non-Identical Variable Sets. AAAI’20. [pdf]
  • [CD][ML/AI]  B. Huang, K. Zhang, P. Xie, M. Gong, E. Xing, C. Glymour. Specific and Shared Causal Relation Modeling and Mechanism-based Clustering. NeurIPS’19.[pdf]
  • [CD][ML/AI]  B. Huang, K. Zhang, M. Gong, C. Glymour. Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models. ICML’19.[pdf]
  • [SD]  R. Sanchez-Romero, J. D. Ramsey, K. Zhang, M. R. K. Glymour, B. Huang, C. Glymour. Causal Discovery of Feedback Networks with Functional Magnetic Resonance Imaging. Network Neuroscience: 1-51. [pdf]
  • [CD]  A. Ghassami, N. Kiyavash, B. Huang, K. Zhang. Multi-Domain Causal Structure Learning in Linear Systems. NeurIPS’18. [pdf]
  • [CD]  B. Huang, K. Zhang, Y. Lin, B. Schölkopf, C. Glymour. Generalized Score Functions for Causal Discovery. KDD’18: 1551-1560 (long presentation). [pdf]
  • [CD]  B. Huang, K. Zhang, J. Zhang, R. Sanchez-Romero, C. Glymour, B. Schölkopf. Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrow. ICDM’17: 913-918. [pdf]
  • [CD]  K. Zhang, B. Huang, J. Zhang, C. Glymour, B. Schölkopf. Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination. IJCAI’17: 1347-1353 (long presentation). [pdf]
  • [CD]  K. Zhang, J. Zhang, B. Huang, B. Schölkopf, C. Glymour. On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection. UAI’16: 825-834 (plenary talk session). [pdf]
  • [CD]  B. Huang, K. Zhang, B. Schölkopf. Identification of Time-Dependent Causal Model: A Gaussian Process Treatment. IJCAI’15: 3561-3568. [pdf]

Posters: 

  • B. Huang, Y. Wen, Z. Yang. Identification of Causal Genetic Network for Alzheimer’s Disease. Artificial Intelligence for Data Recovery and Reuse, Pittsburgh, 2019 (Best Student Poster Award).
  • B. Huang, K. Zhang, R. S. Romero, J.D. Ramsey, M. Glymour, C. Glymour. Diagnosis of autism spectrum disorder by causal connectivity strength from resting state functional magnetic resonance imaging data. Society for Neuroscience, Washington, 2017.
  • Y. Lin, B. Huang, K. Zhang, and C. J. McManus. Causal inference in gene expression regulation from large-scale datasets. Cold Spring Harbor Meeting: Eukaryotic mRNA Processing, 2017.
  • R. S. Romero, J.D. Ramsey, K. Zhang, M. Glymour, B. Huang, C. Glymour. Discovery of fMRI Networks with Feedback Structures. International Workshop on Pattern Recognition in Neuroimaging, Toronto, 2017.
  • J.D. Ramsey, M. Glymour, R. S. Romero, B. Huang, K. Zhang, C. Glymour. Discovering high-dimensional directed networks of the human brain using the FGES algorithm for up to a million variables. Complex Systems Conference, Cancun, 2017.
  • M. Glymour, R. S. Romero, J. D. Ramsey, K. Zhang, B. Huang, C. Glymour. Fusiform and Cerebellum rs-fMRI Connectivity Implicated in ASD. Neuroscience Society Meeting, New York, 2016.