B. Huang*, C. Low*, X. Feng, C. Glymour, K. Zhang. Latent Hierarchical Causal Structure Discovery with Rank Constraints. NeurIPS’22. [pdf]
F. Feng, B. Huang, K. Zhang, S. Magliacane. Factored Adaptation for Non-Stationary Reinforcement Learning. NeurIPS’22. [pdf]
F. Xie, B.Huang, Z. Chen, Y. He, Z. Geng, K. Zhang. Identification of Linear Non-Gaussian Latent Hierarchical Structure. ICML’22. [pdf]
B. Huang*, C. Lu*, L. Liu, J. M. Hernandez-Lobato, C. Glymour, B. Schölkopf, K. Zhang. Action-Sufficient State Representation Learning for Control with Structural Constraints. ICML’22. [pdf]
B. Huang, F. Feng, C. Lu, S. Magliacane, K. Zhang. AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning. ICLR’22 (spotlight). [pdf]
W. Chen, K. Zhang, R. Cai, B. Huang, J. Ramsey, Z. Hao, C. Glymour. FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders. arXiv preprint, arXiv:2103.14238, 2021. [pdf]
B. Huang. Diagnosis of Autism Spectrum Disorder by Causal Influence Strength Learned from Resting-State fMRI Data. Neural Engineering Techniques for Autism Spectrum Disorder, 2021. [book website][pdf]
Z. Wang, B. Huang, S. Tu, K. Zhang, L.Xu. DeepTrader: A Deep Reinforcement Learning Approach to Risk-Return Balanced Portfolio Management with Market Conditions Embedding. AAAI‘21. [pdf]
C. Lu*, B. Huang*, K. Wang, K. Zhang, J. M. Hernandez-Lobato, B. Schölkopf. Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation. Offline RL Workshop, NeurIPS’20. [pdf]
B. Huang*, K. Zhang*, J. Zhang, J. Ramsey, R. Sanchez-Romero, C. Glymour, B. Schölkopf. Causal Discovery from Heterogeneous/Nonstationary Data. JMLR, 21(89), 2020. [pdf]
K. Zhang*, M. Gong*, P. Stojanov, B. Huang, Q. Liu, and C. Glymour. Domain Adaptation As a Problem of Inference on Graphical Models. NeurIPS’20. [pdf]
F. Xie, R. Cai, B. Huang, C. Glymour, Z. Hao, K. Zhang, Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent Variable Graphs. NeurIPS’20 (spotlight). [pdf]
B. Huang, K. Zhang, M. Gong, C. Glymour. Causal Discovery from Multiple Data Sets with Non-Identical Variable Sets. AAAI’20. [pdf]
B. Huang, K. Zhang, P. Xie, M. Gong, E. Xing, C. Glymour. Specific and Shared Causal Relation Modeling and Mechanism-based Clustering. NeurIPS’19.[pdf]
B. Huang, K. Zhang, M. Gong, C. Glymour. Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models. ICML’19.[pdf]
A. Ghassami, N. Kiyavash, B. Huang, K. Zhang. Multi-Domain Causal Structure Learning in Linear Systems. NeurIPS’18. [pdf]
B. Huang, K. Zhang, Y. Lin, B. Schölkopf, C. Glymour. Generalized Score Functions for Causal Discovery. KDD’18: 1551-1560 (long presentation). [pdf]
R. Sanchez-Romero, J. D. Ramsey, K. Zhang, M. R. K. Glymour, B. Huang, C. Glymour. Causal Discovery of Feedback Networks with Functional Magnetic Resonance Imaging. Network Neuroscience: 1-51. [pdf]
B. Huang, K. Zhang, J. Zhang, R. Sanchez-Romero, C. Glymour, B. Schölkopf. Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrow. ICDM’17: 913-918. [pdf]
K. Zhang, B. Huang, J. Zhang, C. Glymour, B. Schölkopf. Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination. IJCAI’17: 1347-1353 (long presentation). [pdf]
K. Zhang, J. Zhang, B. Huang, B. Schölkopf, C. Glymour. On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection. UAI’16: 825-834 (plenary talk session). [pdf]
B. Huang, K. Zhang, B. Schölkopf. Identification of Time-Dependent Causal Model: A Gaussian Process Treatment. IJCAI’15: 3561-3568. [pdf]
Posters:
B. Huang, Y. Wen, Z. Yang. Identification of Causal Genetic Network for Alzheimer’s Disease. Artificial Intelligence for Data Recovery and Reuse, Pittsburgh, 2019 (Best Student Poster Award).
B. Huang, K. Zhang, R. S. Romero, J.D. Ramsey, M. Glymour, C. Glymour. Diagnosis of autism spectrum disorder by causal connectivity strength from resting state functional magnetic resonance imaging data. Society for Neuroscience, Washington, 2017.
Y. Lin, B. Huang, K. Zhang, and C. J. McManus. Causal inference in gene expression regulation from large-scale datasets. Cold Spring Harbor Meeting: Eukaryotic mRNA Processing, 2017.
R. S. Romero, J.D. Ramsey, K. Zhang, M. Glymour, B. Huang, C. Glymour. Discovery of fMRI Networks with Feedback Structures. International Workshop on Pattern Recognition in Neuroimaging, Toronto, 2017.
J.D. Ramsey, M. Glymour, R. S. Romero, B. Huang, K. Zhang, C. Glymour. Discovering high-dimensional directed networks of the human brain using the FGES algorithm for up to a million variables. Complex Systems Conference, Cancun, 2017.
M. Glymour, R. S. Romero, J. D. Ramsey, K. Zhang, B. Huang, C. Glymour. Fusiform and Cerebellum rs-fMRI Connectivity Implicated in ASD. Neuroscience Society Meeting, New York, 2016.